

GREEN ELECTRICITY NETWORK INTEGRATION

Monday, February 28, 2011

Electricity Transmission

- \$354 B electricity sales
- 166,000 miles operated by 500 companies
 98% AC, voltages > 100kV
- 3 major interconnections
- 3,170 utility companies
- Over 140 control areas

- 14,000 transmission substations
- ~44 million liquid-immersed distribution transformers in service in 1995
- ~12 million dry transformers

Sources: 1996 ORNL, "Determination Analysis of Energy Conservation Standards for Distribution Transformers"; and DoE Office of Electricity Delivery and Energy Reliability

...day-ahead market & spot market coordinate additional generation

...generator spins up: coal/nuclear /gas (day-ahead), gas (spot market)

...power flows into the grid

...electrons flow along path of least resistance

...the load draws power from the grid

- Negligible storage just in time delivery of power
- Centrally controlled
- Negligible control of path Joules are indistinguishable

Not the internet

Drivers for Change

ARPA-E Workshop

The White Space

Increasingly Unreliable

Blackouts measured in customers affected

Source: NERC DAWG records and EIA data cited in Hines, Apt, Liao, Talukdar

Aging Infrastructure

"average generating station was built in the 1960s using even older technology."

"average age of a substation transformer is 42, 2 years more than...life span."

Source: Galvin Electricity Initiative

Increasingly Unpredictable

Proliferation of non-dispatchable generation

Includes non-renewable alternative resources

Increasingly Unpredictable

Congested Lines

Source: May 2002 DoE National Transmission Grid Study

Inefficient Markets

Location marginal pricing

This image will be refreshed in 3 Minutes, 4 Seconds. Please hit crtl-F5 to manually refresh this page.

Drivers for Change

ARPA-E Workshop

The White Space

How do we make a more flexible, controllable electricity grid?

Workshop Overview

Academia (power systems)

4 participants

Presentation: Deepak Divan, GTech

"Dynamic control of grid assets"

Academia (control)

12 participants

Presentation: Munther Dahleh, MIT

"Network control"

<u>Government</u>

18 participants (10 from national labs, 5 DOE, NSF, NIST)

Presentation: Debra Lew, Senior Project Lead NREL

"Western Wind and Solar Integration Study"

Utility/RTO

7 participants

Presentation: Terry Oliver, CTO BPA

"Integrating Renewable Resources

into the Electric Grid"

Vendors

9 participants

Presentation: Le Tang, CTO ABB

"Future Transmission, HVDC &FACTS"

Workshop Findings

Control Theory

Control Engineering

linear

Centralized

convex

Scheduling

<u>Transmission</u> <u>Hardware</u>

Edge Hardware

HVAC Mesh

VAR Support

Point-point HVDC

Storage

Control Theory

Objective:

- Generated Power = Power into Load
- Reliability, Cost, Frequency Control, Voltage Level, etc

Control = Sensing + Computation + Actuation

Control Variables

REAL POWER

Voltage Waveform & Current Waveform or

Real Power & Reactive Power

$$P = IV^{Power = Current \cdot Voltage}$$

REACTIVE POWER

Real and Reactive Power Conversion

Designing Power Flow

Controlling Power Flow

Minimizing the cost of fuel to deliver power is Hard (NP)

Must search through many choices of generator outputs for achieving a desired load

What kind of control?

- Linear vs. Non-linear
- Deterministic vs. Stochastic
- Time-invariant vs. Time-varying
- Continuous-time vs. Discrete-time

Controlling Power Flow

Power Flow Control

- Feed-forward control
- Assume:
 - Linear
 - Deterministic
 - Time Invariant
- Central control

Error (Frequency, Voltage)

- Feedback control
- Account for
 - Non-linearity
 - Dynamics
- Distributed or local control

Control Infrastructure

Improved Sensing

A PMU measures

- Current (Hall sensor)
- Frequency (LC Circuit)
- Time (GPS)
- Voltage
- Relative Phase

• Sample 30 msec

Improved Communications

Grid Connected Router

- Low-latency
- MPLS
- Cyber security
- 100-600 μs For crypto

- Fast
- Secure
- Resilient

Control Challenges

- Traditional control theory assumes centralized feedback control.
- Not always feasible for large-scale distributed systems:
 - Inability to communicate with all subsystems
 - Incomplete/imperfect information
 - Complexity of centralized decision-making
 - Asynchrony
 - Heterogonous decision-makers with different objective and uncertain responses

Networked control (Developed since 2005)

- Several layers: Physical, communication, and decision network
 - The physical layer consists of several distributed subsystems, coupled through and/or economics, via static and/or dynamic constraints.

Workshop Findings

Control TheoryControl EngineeringNetwork
controlCentralized
DynamicSchodulingReal-time

Scheduling

Architecture (protocols, etc)

<u>Transmission</u> <u>Hardware</u>

convex

HVAC Mesh

Point-point HVDC

Edge Hardware

VAR Support

Routing

Storage

Actuators

Control in the Grid

Flexible AC Transmission System:

- Static VAR
- •STATCOM
 - •UPFC

Demand Response

Schedule demand (eg. large industrial loads)

Power Flow Controller (AC)

AC Universal Power Flow Controller Global Total = 3 Cost=\$140/W

Power Flow Controller (DC)

Multiterminal HVDC

Cost=\$900/W Line=\$1M/MW.mi Term=\$250k/MW

- \$5.2 B (5 phases)
- Offshore multi-terminal voltage-sourced converter (VSCs) backbone
- 6000 MWs of offshore wind farms in federal waters off of NJ, DE, MD & VA
- PJM Total Peak Load = 144,644 MW
- Funded by Google, Good Energy & Marubeni Power
- Optimal power flow scheduling over 2000-MW transfer capability
- Adds 2 independent transmission circuits
 into PJM
- First phase energization: 2016

NEXT GENERATION HARDWARE

Power Converter Augmented Transformers

Resilient HVDC

LTC

Transformer (Grid Asset)

- A fail-normal mode
- Fractionally rated converters

- HVDC fault protection
- · High capacity, low cost cable
- High-voltage, uncooled

ADEPT Goal: 13kV SiC GTO

15kV limiter

6kV Si GTO

Managing Non-dispatchable Generation

Drivers for Change

ARPA-E Workshop

The White Space

Missing Control Architecture

Major Trends

- Moving to real-time, closed loop control over wide-area
- More controllable AC grid
- Multi-terminal HVDC for improved transport

Future

- Need a comprehensive architecture for control & actuation
- Need a path for incremental technology adoption

Benefits of Routing Power

Today: Uncontrolled Flows

Power Routing

Base Case: 3.4 MW sent; 0.34 MW recd

•Power flow control to route power along underutilized paths, 80% less transmission infrastructure required

GA Tech study of simplified IEEE 39 Bus system with 4 control areas, operation simulated for 20 years, 20% RPS phased in over 20 years, sufficient transmission capacity added each year to eliminate curtailment of renewable generation

GENI

Validation Control Theory Control Engineering Centralized **linear** Dynamic Network control Real-time Scheduling convex **Architecture** Routing (protocols, etc) **Transmission** Hardware Edge Hardware **Validation HVAC** Resilient **VAR Support** Mesh Multi-term Market **HVDC** Point-point Storage Rules **HVDC** Rampable Thin AC Power "Baseload" Flow Control

